You can Download Samacheer Kalvi 11th Maths Book Solutions Guide Pdf, Tamilnadu State Board help you to revise the complete Syllabus and score more marks in your examinations.
Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7
Question 1.
If A + B + C = 180°, prove that
(i) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
(iii) sin2 A + sin2 B + sin2 C = 2 + 2 cos A cos B cos C
(iv) sin2 A + sin2 B – sin2 C = 2 sin A sin B cos C
(vi) sin A + sin B + sin C = 4 cos \(\frac{\mathbf{A}}{2}\) cos \(\frac{\mathbf{B}}{2}\) cos \(\frac{\mathbf{c}}{2}\)
(vii) sin(B + C – A) + sin(C + A – B) + sin(A + B – C) = 4 sin A sin B sin C.
Solution:
(i) LHS = (sin 2A + sin 2B) + sin 2C
= 2 sin (A + B) cos (A – B) + 2 sin C cos C
[sin (A + B) = sin (180° – C) = sin C]
= 2 sin C cos (A – B) + 2 sin C cos C
= 2 sin C [ cos (A – B) + cos C]
{cos C = cos [180° – (A + B)] = – cos (A + B)}
= 2 sin C [cos (A – B) – cos (A + B)]
(ii)
(iii)
[cos (180° – C) – cos C – cos C]
= 2 + cos C [cos (A – B) + cos (A + B)]
= 2+ cos C[2 cos A cos B]
= 2 + 2 cos A cos B cos C = RHS
(iv)
(v)
(vi)
(vii) Now A + B + C = 180°
So B + C = 180° – A
sin (B + C – A) = sin (180° – A – A)
= sin(180° – 2A) = sin 2A
Now LHS = sin 2A + sin 2B + sin 2C
= 4 sin A sin B sin C (from (i) ans) = RHS
Question 2.
If A + B + C = 2s, then prove that sin(s – A) sin(s – B) + sin s sin(s – C) = sin A sin B.
Solution:
Question 3.
Solution:
⇒ A+B+C = 180°
⇒ A + B = 180° – C
multiply 2 on both sides
⇒ 2A + 2B = 360° – 2C
⇒ 2(A + B) = 360° – 2C
⇒ tan(2A + 2B) = tan(360° – 2C) = -tan 2C
⇒ tan 2A + tan 2B = -tan2C[1 – tan 2A tan 2B]
⇒ tan 2A + tan 2B = -tan 2C + tan 2A tan 2B tan 2C
⇒ tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
Question 4.
If A + B + C = \(\frac{\pi}{2}\), prove the following
(i) sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
(ii) cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C.
Solution:
(i) LHS = (sin 2A + sin 2B) + sin 2C
= 2 sin (A + B) cos (A – B) + 2 sin C cos C = 2 sin (90° – C) cos (A – B) + 2 sin C cos C
= 2 cos C [cos (A – B) + sin C] + cos (A + B) ( ∴ A + B = π/2 – C)
= 2 cos C [cos (A – B) + cos (A + B)]
= 2 cos C [2 cos A cos B]
= 4 cos A cos B cos C = RHS
(ii) LHS = (cos 2A + cos 2B) + cos 2C
= 2 cos (A + B) cos (A – B) + 1 – 2 sin2 C
= 1 + 2 sin C (cos (A – B) – 2 sin2 C)
{∴ cos (A + B) = cos (90° – C) = sin C}
= 1 + 2 sin C [cos (A- B) – sin C]
= 1 + 2 sin C [cos (A – B) – cos (A + B)]
= 1 + 2 sin C [2 sin A sin B]
= 1 + 4 sin A sin B sin C
= RHS
Question 5.
If ∆ABC is a right triangle and if ∠A = \(\frac{\pi}{2}\), then prove that
(i) cos2 B + cos2 C = 1
(ii) sin2 B + sin2 C = 1
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 Additional Questions
Question 1.
A + B + C = π, prove that sin 2A – sin 2B + sin 2C = 4 cos A sin B cos C
Solution:
LHS = sin 2A – sin 2B + sin 2C
= sin 2A + sin 2C – sin 2B
= 2 sin (A + C) cos (A – C) – 2 sin B cos B
= 2 sin (180° – B) cos (A-C) – 2 sin B cos B
= 2 sin B cos (A – C) – 2 sin B cos B
= 2 sin B [cos (A – C) – cos B]
= 2 sin B [cos (A – C) – cos (180° – (A + C))]
= 2 sin B [cos (A – C) + cos (A + C)]
= 2 sin B [2 cos A cos C]
= 4 cos A sin B cos C
= RHS
Question 2.
Solution:
substitute in (1) we get,