Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7

You can Download Samacheer Kalvi 11th Maths Book Solutions Guide Pdf, Tamilnadu State Board help you to revise the complete Syllabus and score more marks in your examinations.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7

Question 1.
If A + B + C = 180°, prove that
(i) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 1
(iii) sin2 A + sin2 B + sin2 C = 2 + 2 cos A cos B cos C
(iv) sin2 A + sin2 B – sin2 C = 2 sin A sin B cos C
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 2
(vi) sin A + sin B + sin C = 4 cos \(\frac{\mathbf{A}}{2}\) cos \(\frac{\mathbf{B}}{2}\) cos \(\frac{\mathbf{c}}{2}\)
(vii) sin(B + C – A) + sin(C + A – B) + sin(A + B – C) = 4 sin A sin B sin C.
Solution:
(i) LHS = (sin 2A + sin 2B) + sin 2C
= 2 sin (A + B) cos (A – B) + 2 sin C cos C
[sin (A + B) = sin (180° – C) = sin C]
= 2 sin C cos (A – B) + 2 sin C cos C
= 2 sin C [ cos (A – B) + cos C]
{cos C = cos [180° – (A + B)] = – cos (A + B)}
= 2 sin C [cos (A – B) – cos (A + B)]
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 3

(ii)
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 4

(iii)
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 5
[cos (180° –  C) – cos C – cos C]
= 2 + cos C [cos (A – B) + cos (A + B)]
= 2+ cos C[2 cos A cos B]
= 2 + 2 cos A cos B cos C = RHS

(iv)
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 7

(v)
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 8

(vi)
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 9
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 10

(vii) Now A + B + C = 180°
So B + C = 180° – A
sin (B + C – A) = sin (180° – A – A)
= sin(180° – 2A) = sin 2A
Now LHS = sin 2A + sin 2B + sin 2C
= 4 sin A sin B sin C (from (i) ans) = RHS

Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7

Question 2.
If A + B + C = 2s, then prove that sin(s – A) sin(s – B) + sin s sin(s – C) = sin A sin B.
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 11

Question 3.
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 111
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 12
⇒ A+B+C = 180°
⇒ A + B = 180° – C
multiply 2 on both sides
⇒ 2A + 2B = 360° – 2C
⇒ 2(A + B) = 360° – 2C
⇒ tan(2A + 2B) = tan(360° – 2C) = -tan 2C
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 13
⇒ tan 2A + tan 2B = -tan2C[1 – tan 2A tan 2B]
⇒ tan 2A + tan 2B = -tan 2C + tan 2A tan 2B tan 2C
⇒ tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 112

Question 4.
If A + B + C = \(\frac{\pi}{2}\), prove the following
(i) sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
(ii) cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C.
Solution:
(i) LHS = (sin 2A + sin 2B) + sin 2C
= 2 sin (A + B) cos (A – B) + 2 sin C cos C = 2 sin (90° – C) cos (A – B) + 2 sin C cos C
= 2 cos C [cos (A – B) + sin C] + cos (A + B) ( ∴ A + B = π/2 – C)
= 2 cos C [cos (A – B) + cos (A + B)]
= 2 cos C [2 cos A cos B]
= 4 cos A cos B cos C = RHS

Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7

(ii) LHS = (cos 2A + cos 2B) + cos 2C
= 2 cos (A + B) cos (A – B) + 1 – 2 sin2 C
= 1 + 2 sin C (cos (A – B) – 2 sin2 C)
{∴ cos (A + B) = cos (90° – C) = sin C}
= 1 + 2 sin C [cos (A- B) – sin C]
= 1 + 2 sin C [cos (A – B) – cos (A + B)]
= 1 + 2 sin C [2 sin A sin B]
= 1 + 4 sin A sin B sin C
= RHS

Question 5.
If ∆ABC is a right triangle and if ∠A = \(\frac{\pi}{2}\), then prove that
(i) cos2 B + cos2 C = 1
(ii) sin2 B + sin2 C = 1
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 14
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 15
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 16
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 17

Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 Additional Questions

Question 1.
A + B + C = π, prove that sin 2A – sin 2B + sin 2C = 4 cos A sin B cos C
Solution:
LHS = sin 2A – sin 2B + sin 2C
= sin 2A + sin 2C – sin 2B
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 18
= 2 sin (A + C) cos (A – C) – 2 sin B cos B
= 2 sin (180° – B) cos (A-C) – 2 sin B cos B
= 2 sin B cos (A – C) – 2 sin B cos B
= 2 sin B [cos (A – C) – cos B]
= 2 sin B [cos (A – C) – cos (180° – (A + C))]
= 2 sin B [cos (A – C) + cos (A + C)]
= 2 sin B [2 cos A cos C]
= 4 cos A sin B cos C
= RHS

Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7

Question 2.
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 19
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 20
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 21
substitute in (1) we get,
Samacheer Kalvi 11th Maths Solutions Chapter 3 Trigonometry Ex 3.7 22

Leave a Comment

Your email address will not be published. Required fields are marked *