You can Download Samacheer Kalvi 9th Maths Book Solutions Guide Pdf, Tamilnadu State Board help you to revise the complete Syllabus and score more marks in your examinations.
Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 3 Algebra Ex 3.6
Question 1.
Factorise the following:
(i) x2 + 10x + 24
(ii) z2 + 4z – 12
(iii) p2 – 6p – 16
(iv) t2 + 72 – 17t
(v) y2 – 16y – 80
(vi) a2 + 10a – 600
Solution:
(i) x2 + 10x + 24
x2 + 10x + 24 = x2 + 6x + 4x + 24
= x(x + 6) + 4 (x + 6)
= (x + 6) (x + 4)
(ii) z2 + 4z – 12
z2 + 4z – 12 = z2 + 6z – 2z- 12
= z (z + 6) – 2 (z + 6)
= (z + 6) (z – 2)
(iii) p2 – 6p – 16
p2 – 6p – 16 = p2 – 8p + 2p – 16
= p(p – 8) + 2(p – 8)
= (p – 8)(p + 2)
(iv) t2 + 72 – 17t
t2 + 72 – 17t = t2 – 17t + 72
= t2 – 9t – 8t + 72
= t(t – 9) – 8 (t – 9)
= (t – 9) (t – 8)
(v) y2 – 16y – 80
y2 – 16y – 80 = y2 – 20y + 4y – 80
= y(y – 20) + 4 (y – 20)
= (y – 20) (y + 4)
(vi) a2 + 10a – 600
a2 + 10a – 600 = a2 + 30a – 20a – 600
= a(a + 30) -20 (a + 30)
= (a + 30) (a – 20)
Question 2.
Factorise the following
(i) 2a2 + 9a + 10
(ii) 5x2 – 29xy – 42y2
(iii) 9 – 18x + 18x2
(iv) 6x2 + 16xy + 8y2
(v) 12x2 + 36x2y + 27y2x2
(vi) (a + b)2 + 9 (a + b) + 18
Solution:
(i) 2a2 + 9a + 10
2a2 + 9a + 10 = 2a2 + 4a + 5a + 10
= 2a(a + 2) + 5 (a + 2)
= (a+ 2) (2a+ 5)
(ii) 5x2 – 29xy – 42y2
5x2 – 35xy + 6xy – 42y2
= 5x (x – 7) + 6y (x – 7)
= (x – 7) (5x + 6y)
(iii) 9 – 18x + 8x2
= 8x2 – 18x + 9
= 8x2 – 6x – 12x + 9
= 2x (4 x – 3) – 3 (4x – 3)
= (4x – 3) (2x – 3)
(iv) 6x2 + 16xy + 8y2
= 2 (3x2 + 8xy + 4y2)
= 2 (3x2 + 8xy + 4y2)
= 2 (3x2 + 6xy + 2xy + 4y2)
= 2 (3x (x + 2y) + 2y (x + 2y))
= 2 (x + 2y) (3x + 2y)
(v) 12x2 + 36x2y + 27y2x2
= 27y2x2 + 36x2y + 12x2 = 3x2(9y2 + 12y + 4)
= 3x2 (9y2 + 6y + 6y + 4) = 3x2 (3y (3y + 2) + 2 (3y + 2))
= 3x2 (3y + 2) (3y + 2) = 3x2 (3y + 2) (3y + 2)
(vi) (a + b)2 + 9 (a + 6) + 18
= (a + b)2 + 6 (a + b) + 3 (a + b) + 18
= (a + b) ((a + b) + 6) + 3 ((a + b) + 6)
= ((a + 6) + 6) ((a + b) + 3) = (a + b + 6) (a + b + 3)
Question 3.
Factorise the following:
(i) (p – q)2 – 6(p – q) – 16
(ii) m2 + 2mn – 24n2
(iii) \(\sqrt{5} a^{2}\) + 2a – \(3 \sqrt{5}\)
(iv) a4 – 3a2 + 2
(v) 8m3 – 2m2n – 15mn2
(vi) \(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{2}{x y}\)
Solution:
(i) (p – q)2 – 6 (p – q) – 16
= (p – q)2 – 8(p – q) + 2(p – q) – 16
= (p – q)((p – q) – 8) + 2((p – q) – 8)
= (p – q – 8)(p – q + 2)
(ii) m2 + 2mn – 24n2
= m2 + 6mn – 4mn – 24n2
= m(m + 6n) – 4n(m + 6n)
= (m + 6n)(m – 4n)