Samacheer Kalvi 9th Maths Solutions Chapter 2 Real Numbers Ex 2.2

You can Download Samacheer Kalvi 9th Maths Book Solutions Guide Pdf, Tamilnadu State Board help you to revise the complete Syllabus and score more marks in your examinations.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 2 Real Numbers Ex 2.2

Question 1.
Express the following rational numbers into decimal and state the kind of decimal expansion.
(i) \(\frac { 2 }{ 7 }\)
(ii) \(-5 \frac{3}{11}\)
(iii) \(\frac { 22 }{ 3 }\)
(iv) \(\frac { 327 }{ 200 }\)
Solution:
(i) \(\frac { 2 }{ 7 }\)
Samacheer Kalvi 9th Maths Chapter 2 Real Numbers Ex 2.2 1
\(\frac{2}{7}=0 . \overline{285714}\)
Nen-terminating and recurring

(ii) \(-5 \frac{3}{11}\)
Samacheer Kalvi 9th Maths Chapter 2 Real Numbers Ex 2.2 2
\(-5 \frac{3}{11}=-5 . \overline{27}\)
Nen-terminating and recurring

(iii) \(\frac { 22 }{ 3 }\)
Samacheer Kalvi 9th Maths Chapter 2 Real Numbers Ex 2.2 3
\(\frac{22}{3}=7 . \overline{3}\)
Nen-terminating and recurring

(iv) \(\frac { 327 }{ 200 }\)
Samacheer Kalvi 9th Maths Chapter 2 Real Numbers Ex 2.2 4
\(\frac { 327 }{ 200 }\) = 1.635, Terminating.

Question 2.
Express \(\frac { 1 }{ 13 }\) in decimal form. Find the length of the period of decimals.
Solution:
Samacheer Kalvi 9th Maths Chapter 2 Real Numbers Ex 2.2 5
\(\frac{1}{13}=0 . \overline{076923}\) has the length of the period of decimals = 6.

Question 3.
Express the rational number \(\frac { 1 }{ 13 }\) in recurring decimal form by using the recurring decimal expansion of \(\frac { 1 }{ 11 }\) . Hence write \(\frac { 71 }{ 33 }\) in recurring decimal form.
Solution:
The recurring decimal expansion of \(\frac { 1 }{ 11 }\) = 0.09090909…. = \(0.\overline { 09 }\)
Samacheer Kalvi 9th Maths Chapter 2 Real Numbers Ex 2.2 6

Samacheer Kalvi 9th Maths Solutions Chapter 2 Real Numbers Ex 2.2

Question 4.
Express the following decimal expression into rational numbers.
(i) \(0.\overline { 24 }\)
(ii) \(2.\overline { 327 }\)
(iii) -5.132
(iv) \(3.1\overline { 7 }\)
(v) \(17.\overline { 215 }\)
(vi) \(-21.213\overline { 7 }\)
Solution:
(i) \(0.\overline { 24 }\)
Let x = \(0.\overline { 24 }\) = 0.24242424……… ….(1)
(Here period of decimal is 2, multiply equation (1) by 100)
100x = 24.242424 ………. ….(2)
(2) – (1)
100x – x = 24.242424…. – 0.242424….
99x = 24
x = \(\frac { 24 }{ 99 }\)

(ii) \(2.\overline { 327 }\)
Let x = 2.327327327…… …………. (1)
(Here period of decimal is 3, multiply equation (1) by 1000)
1000x = 2327.327… ……………. (2)
(2) – (1)
1000x – x = 2327.327327… – 2.327327….
999x = 2325
x = \(\frac { 2325 }{ 999 }\)

(iii) -5.132
\(x=-5.132=\frac{-5132}{1000}=\frac{-1283}{250}\)

(iv) \(3.1\overline { 7 }\)
Let x = 3.1777 ……. ………… (1)
(Here the repeating decimal digit is 7, which is the second digit after the decimal point, multiply equation (1) by 10)
10x = 31.7777 …….. …………. (2)
(Now period of decimal is 1, multiply equation (2) by 10)
100x = 317.7777…….. …………….. (3)
(3) – (2)
100x – 10x = 317.777…. – 31.777….
90x = 286
\(x=\frac{286}{90}=\frac{143}{45}\)

(v) \(17.\overline { 215 }\)
Let x = 17.215215 ……. ………. (1)
1000x = 17215.215215…… …………. (2)
(2) – (1)
1000x – x = 17215.215215… – 17.215…
999x = 17198
x = \(\frac { 17198 }{ 999 }\)

(vi) \(-21.213\overline { 7 }\)
Let x = -21.2137777… ……….. (1)
10x = -212.137777…… ……….. (2)
100x = -2121.37777…… ………… (3)
1000x = -21213.77777…. ……….. (4)
10000x = 212137.77777….. ………… (5)
(Now period of decimal is 1, multiply equation (4) it by 10)
(5) – (4)
10000x – 1000x = (-212137.7777…) – (-21213.7777…)
9000x = -190924
x = –\(\frac { 190924 }{ 9000 }\)

Samacheer Kalvi 9th Maths Solutions Chapter 2 Real Numbers Ex 2.2

Question 5.
Without actual division, find which of the following rational numbers have terminating decimal expansion.
(i) \(\frac { 7 }{ 128 }\)
(ii) \(\frac { 21 }{ 15 }\)
(iii) 4\(\frac { 9 }{ 35 }\)
(iv) \(\frac { 219 }{ 2200 }\)
Solution:
(i) \(\frac { 7 }{ 128 }\)
Samacheer Kalvi 9th Maths Chapter 2 Real Numbers Ex 2.2 7
So \(\frac{7}{128}=\frac{7}{2^{7} 5^{0}}\)
This of the form 4m, n ∈ W
So \(\frac { 7 }{ 128 }\) has a terminating decimal expansion.

(ii) \(\frac { 21 }{ 15 }\)
Samacheer Kalvi 9th Maths Chapter 2 Real Numbers Ex 2.2 8
So \(\frac { 21 }{ 15 }\) has a terminating decimal expansion.

(iii) 4\(\frac { 9 }{ 35 }\) = \(\frac { 149 }{ 35 }\)
Samacheer Kalvi 9th Maths Chapter 2 Real Numbers Ex 2.2 9
\(\frac{49}{35}=\frac{149}{5^{1} 7^{1}}\)
∴ This is not of the form \(\frac{p}{5^{1} 7^{1}}\)
So 4\(\frac { 9 }{ 35 }\) has a non-terminating recurring decimal expansion.

(iv) \(\frac { 219 }{ 2200 }\)
Samacheer Kalvi 9th Maths Chapter 2 Real Numbers Ex 2.2 10
\(\frac{219}{2200}=\frac{219}{2^{3} 5^{2} 11^{1}}\)
∴ This is not of the form \(\frac{p}{2^{m} 5^{n}}\)
So \(\frac { 219 }{ 2200 }\) has a non-terminating recurring decimal expansion.

Leave a Comment

Your email address will not be published. Required fields are marked *