Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1

You can Download Samacheer Kalvi 11th Maths Book Solutions Guide Pdf, Tamilnadu State Board help you to revise the complete Syllabus and score more marks in your examinations.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1

In problems 1-6, complete the table using calculate and use the result to estimate the limit.

Question 1.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 1
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 2

Question 2.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 3
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 4
∴ Limit is 0.25

Question 3.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 5
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 6
∴ Limit is 0.288

Question 4.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 7
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 8
∴ Limit is -0.25

Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1

Question 5.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 9
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 10
∴ Limit is 1

Question 6.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 11
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 12
∴ Limit is 0

In exercise problems 7-15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

Question 7.
\(\lim _{x \rightarrow 3}\)(4 – x)
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 13
Limit exists and is equal to 1

Question 8.
\(\lim _{x \rightarrow 1}\)(x2 + 2)
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 14
Limit exists and is equal to = 3

Question 9.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 15
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 16

Question 10.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 17
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 18

Question 11.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 19
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 20
The limit does not exist

Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1

Question 12.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 21
Solution:
When x → 5, (x – 5) = -(x – 5)
∴ \(\lim _{x \rightarrow 5^{-}} \frac{-(x-5)}{(x-5)}\) = -1
When x → 5+, (x – 5) = (x – 5)
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 22
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 23

Question 13.
\(\lim _{x \rightarrow 1}\) sin(πx)
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 24
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 25

Question 14.
\(\lim _{x \rightarrow 0}\) (sec x)
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 26

Question 15.
\(\lim _{x \rightarrow \frac{\pi}{2}}\) tan x
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 27
The limit does not exist

Sketch the graph of f, then identify the values of x0 for which \(\lim _{x \rightarrow x_{0}}\) f(x) exists.

Question 16.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 28
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 29

Question 17.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 30
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 31
Limit exists except at x0 = π

Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1

Question 18.
Sketch the graph of a function f that satisfies the given values:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 32
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 33

Question 19.
Write a brief description of the meaning of the notation \(\lim _{x \rightarrow 8}\) f(x) = 25
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 34

Question 20.
If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?
Solution:
Given f(2) = 4
Here at x = 2 the value of the function is given.
Therefore, we cannot conclude anything about the limit of f(x) as x approaches 2.

Question 21.
If the limit of f(x) as z approaches 2 is 4, can you conclude anything about f(2)?
Explain reasoning.
Solution:
Given \(\lim _{x \rightarrow 2}\) f(x) = 4
Since the limit of the function need not be equal to the value of the function, we cannot conclude anything about f(2).

Question 22.
Evaluate: \(\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}\) if it exists by finding f(3) and f(3+).
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 35
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 36

Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1

Question 23.
Verify the existence of Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 37
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 38
The limit does not exist

Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 Additional Questions

Question 1.
Suppose Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 39. What are the possible values of a and b?
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 40

Question 2.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 41
Solution:
We have,
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 42

Question 3.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 43
Solution:
We have,
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 44

Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1

Question 4.
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 45
Solution:
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 46
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 47

Question 5.
Let a1, a2 …………… an be fixed real numbers such that f(x) = (x – a1) , (x – a2), ………. (x – an) what \(\lim _{x \rightarrow a}\) f(x) For a ≠ a1, a2, ………… an compute \(\lim _{x \rightarrow a}\) f(x).
Solution:
We have,
Samacheer Kalvi 11th Maths Solutions Chapter 9 Limits and Continuity Ex 9.1 48

Leave a Comment

Your email address will not be published. Required fields are marked *